幾何音響シミュレーションに基づく6チャンネル音場再現システムの構築 一室内音響特性の再現性について—

Construction of 6-channel sound simulation system based on geometrical acoustic

simulation : reproducibility of room acoustics

学籍番号 096773
氏 名 三上 雄一郎 (Mikami, Yuichiro)
指導教員 佐久間 哲哉 准教授

1. はじめに

音響設計においては、音響数値シミュレーシ ョンの結果を実際に聞いてみる「可聴化」が求 められる。実務の音響設計実務においては、計 算コストが少なく操作が簡単な幾何音響解析が 普及している。近年、幾つかの商用ソフトにお いて、壁面の境界条件として吸音率に加えて壁 面の拡散に関する指標であり、全反射エネルギ ーに対する鏡面反射成分以外のエネルギーの割 合として定義される乱反射率が導入され、解析 精度を高める試みがされている。しかし、乱反 射率が聴感印象に及ぼす影響についてはあまり 検討されていない。

可聴化の手法である6チャンネル音場再現シ ステムは、無響室において3次元音場を自然な 聴感印象で再現することができ、これまでに 様々な主観評価実験に用いられている。

本研究では、幾何音響シミュレーションに基 づく6チャンネル音場再現システムを構築し、 乱反射率と吸音面配置を変化させた解析音場を 可聴化し、再現音場の再現性について物理的、 聴感的に検討することを目的とする。

2. 6 チャンネル音場再現システム

2.1 概要

単一指向性(カージオイド)をもつ6本のマ イクロホンで、直交6方向指向性インパルス応 答を測定して、無響録音とたたみ込むことで室 内音響特性を再現することができる。この原理 を応用し、数値解析音場の受音点で、直交6方 向重み付きインパルス応答を出力して、無響録 音とたたみ込むことで室内音響特性を再現する。

2.2 システム設定

水平方向のスピーカー配置は、直交軸を正面 から45度傾けた配置とした。中心からスピーカ ーの距離は2170mm、スピーカー高さはツィー ターの位置で床面から1200mmである。再生ス ピーカーの周波数特性は1/3 オクターブバンド 63Hz~20kHz 帯域で 1dB 以内にイコライジング した。

幾何音響シミュレーションに基づく6チャンネル音場再現システム

3.1 概要

幾何音響解析音場の受音点における直交6方 向指向性重み付きインパルス応答を出力し、実 時間たたみ込み機で無響録音音源とたたみ込ん で音場再現を行った。Fig.1にシステム概要を示 す。

3.2 幾何音響シミュレーションによる検討

商用ソフト CATT-Acoustics v8 を用いて解析を 行った。境界条件として吸音率と乱反射率を変 化させることができる。解析周波数は1オクタ ーブバンド 125Hz~16kHz 帯域である。Table.1 に解析条件、Fig.2 に音源と受音点の位置関係を 示す。豊かな響きで評価の高いシューボックス 型ホールを仮定した直方体室を解析対象とし、 音源は周波数特性が平坦な無指向性点音源とし た。音源、受音点の高さは 1.2m である。全ての 条件において平均吸音率は 0.3 である。乱反射率 は全周波数帯域に等しく与えた。乱反射率を sc と表記する。音線数は 1.0×10⁵本とした。 Table.1 解析条件

复卅夕	吸音面	索士法 []	平均	各壁面の	乱反射率
宋仲石	配置	王 1 五 [m]	吸音率	吸音率	[%]
uni	均一	w=20, d=40, h=20	0.3	全面α=0.3	20, 40, 60, 80
fl_ceil	床·天井	w=20, d=40, h=20		床α=0.7	
			0.3	天井α=0.5	20, 40, 60, 80
				その他α=0.1	
fl_rear	床·後壁	w=20, d=40, h=20		床α=0.7	
			0.3	後壁α=0.9	20, 40, 60, 80
				その他α=0.1	

Fig. 2 音源と受音点の位置関係(平面図)

4. 物理的再現性について

解析音場の音響特性が、再現音場でどの程度 反映されるのか検証する。

4.1 解析値について

解析による無指向性インパルス応答、直交6 方向指向性重み付きインパルス応答を同期加算 したもの(6ch 同期加算)が一致するか検証する。 インパルス応答波形は、振幅の二乗値を1msの 区間幅で加算した RMS 波形を用いる。Fig.3 に uni_sc20の波形を示す。上側が無指向性、下側 が6ch 同期加算である。両者の反射音構造に差

4.2 物理指標値による検討

無指向性と 6ch 同期加算のインパルス応答か ら算出した物理指標値の誤差について検証する。 EDT、T₃₀は残響感に関する指標であり、減衰曲 線から直線近似によって傾きをもとめ、60dB減 衰に要する時間を算出する。EDT は初期の 0~ -10dB までの区間で評価し、T₃₀は-5~-35 dB で 評価する。C₈₀はエネルギーの全時間積分に対す る 0~80ms の積分の割合を dB 表示する指標で 楽音の明瞭度と対応する。各指標の弁別閾

(JND) が ISO3382-1 により規定されており、 EDT は 5%、C80 は 1dB である。T30 は規定され ていないが一般的には 5%であるため、この値を 用いる。EDT、T₃₀については無指向性に対する 変化率を百分率で示し、C₈₀については差分で示 す。ISO に従い、500Hz 帯域と 1kHz 帯域の算術 平均値を用いる。

Table. 2 に EDT、 T_{30} 、 C_{80} の誤差を示す。色が 濃い条件では誤差が弁別閾より小さく、斜線の 条件は誤差が弁別閾以上で弁別閾の 2 倍より小 さい場合を意味する。これらは誤差が小さいこ とを示す。 T_{30} は誤差が小さいが、EDT と C_{80} は 誤差が大きい。初期の減衰は異なり、後期の減 衰は似ていることがわかる。

解析の無指向性と 6ch 同期加算のインパルス 応答は異なっているといえる。

Table. 2	解析	(無指向性)	に対す	る解析	(6ch
同期加算)の物	理指標の誤	差と弁疑	別閾の関	係

			受首	「息1			安音点2 sc20 sc40 sc60 sc80 -33.1 -36.9 -24.0 -23.			
		sc20	sc40	sc60	sc80	sc20	sc40	sc60	sc80	
	uni	-7.2	-44.1	-35.9	-44.9	-33.1	-36.9	-24.0	-23.8	
EDT	fl ceil	-7.1	-44.0	-54.3	-58.9	-43.4	-56.3	-34.1	-33.3	
	fl_rear	-16.7	-41.2	-48.4	-42.7	-36.1	-48.2	-39.8	-20.4	
T ₃₀	uni	-19.0	-1.4	-1.6	2.1	-9.1	0.2	0.1	3.9	
	fl_ceil	-20.7	-2.8	-0.8	-0.9	-6.3	5.9	3.6	2.0	
	fl_rear	-16.9	-2.3	0.8	4.8	-7.9	-10.5	3.9	5.3	
C ₈₀	uni	0.5	3.1	3.1	4.3	2.4	4.6	5.6	4.2	
	fl_ceil	1.4	3.5	4.9	5.3	2.8	5.9	5.4	6.1	
	fl_rear	1.7	2.3	3.9	5.1	2.5	5.3	5.4	4.6	
							呉差 <j< td=""><td>ND</td><td></td></j<>	ND		

JND≦誤差<JND×2

4.3 解析音場と再現音場の比較

解析音場の受音点における直交6方向指向性 重み付きインパルス応答とTSP信号をたたみ込 み、再現音場でインパルス応答を測定し、解析 音場との関係について検討した。

4.3.1 インパルス応答測定

Lin-TSP 信号を用いた。サンプリング周波数 48kHz、次数 17、インパルス応答長 1.365 秒、S/N 比改善のための同期加算回数は 5 回である。

4.3.2 インパルス応答波形の比較

Fig. 4 に uni_sc20 の受音点 1 の 500Hz 帯域か ら 4kHz 帯域の RMS 波形を示す。グラフの上側 が解析 (6ch 同期加算)、下側が実測である。2kHz 以下の帯域で両者は良い対応を示すが、4kHz 帯 域では実測の残響部の波形が崩れる。これはス ピーカーの特性によるものと考えられる。

4.3.3 音響物理指標による検討

4.2 と同様に解析(6ch 同期加算)と実測の物 理指標の誤差を比較する。Table.3 に EDT, T₃₀, C₈₀の誤差を示す。EDT, T₃₀ は変化率、C₈₀は差で 表す。各条件の 500Hz 帯域と 1kHz 帯域の算術 平均値と uni の周波数帯域値を示す。

500Hz帯域と1kHz帯域の算術平均値について、 T₃₀とC₈₀で全体的に誤差が小さくなっている。

周波数帯域ごとに誤差をみると、 T_{30} はどの周 波数帯域でも誤差が小さい。EDT、 C_{80} をみると、 4kHz帯域以上では誤差が弁別閾より小さいも のはなく、再現性が良くないといえる。

再現音場は6つのスピーカー出力の同期加算 とみなすことができ、解析(6ch 同期加算)との 対応がよいため、解析(6ch 同期加算)を解析値 として扱う。

 Table.3
 解析(6ch 同期加算)に対する再現音場の物理指標の誤差と弁別閾の関係

500Hz と 1kHz の算術平均値

			受音	r息1			受音	r 息2	
		sc20	sc40	sc60	sc80	sc20	sc40	sc60	sc80
EDT	uni	3.4	24.2	20.9	25.8	2.1	10.2	3.0	9.1
	fl_ceil	-1.1	17.0	32.3	37.9	-1.0	26.8	5.7	12.4
	fl rear	0.9	4.5	22.9	26.6	5.6	2.9	13.7	10.5
T ₃₀	uni	7.4	0.9	3.1	2.3	5.7	1.5	2.5	-0.2
	fl ceil	4.4	5.0	1.5	2.5	-0.3	1.2	2.3	1.2
	fl_rear	7.2	2.8	1.2	-0.2	3.3	4.0	2.8	-1.0
C ₈₀	uni	-1.0	-1.3	-1.3	-1.8	-0.4	-0.6	-0.9	-1.4
	fl_ceil	-1.1	-1.3	-1.4	-1.9	-0.3	-1.0	-0.6	-0.8
	fl_rear	-0.8	-1,1	-1,1	-1.7	-0.7	-0.7	-0.7	-0.5

周波数帯域値

		125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz			
EDT	sc20	26.8	13.2	0.6	6.0	4.3	47.6	47.4			
	sc40	-3.9	-0.9	15.7	34.4	57.4	116.2	122.5			
EDI	sc60	26.0	43.5	5.1	45.9	71.4	115.4	118.2			
	sc80	35.7	34.1	30.2	21.1	88.2	79.3	101.6			
	sc20	4.8	-0.8	7.7	7.1	12.3	26.6	28.8			
T	sc40	6.5	3.2	-2.1	4.5	4.1	4.5	5.6			
1 30	sc60	5.5	4.7	2.3	3.9	2.7	2.4	1.5			
	sc80	15.5	-0.5	0.8	3.9	0.4	2.3	1.2			
C ₈₀	sc20	-1.2	-1.0	-0.9	-1.1	-1.4	-2.8	-4.3			
	sc40	-0.7	-0.9	-1.0	-1.5	-1.9	-5.3	-6.7			
	sc60	-2.2	-1.7	-1.0	-1.5	-2.3	-6.7	-8.5			
	sc80	-2.2	-1.8	-2.0	-1.5	-2.9	-6.6	-8.6			
	調査でいい										

JND≦誤差<JND×2

5 聴感印象評価

再現音場において被験者による聴感印象評価 実験を行い、乱反射率と吸音面配置が聴感印象 に及ぼす影響に着目して、シェッフェの一対比 較法(浦の変法)により2つの実験を行った。

5.1 聴感印象評価実験

<u>実験1</u> 乱反射率が聴感印象に及ぼす影響吸音 面配置条件ごとに乱反射率の条件が

違う刺激対を被験者に呈示し、乱反射率の 主効果を調べた。

<u>実験2</u> 吸音面配置が聴感印象に及ぼす影響

乱反射率条件ごとに吸音面配置の条件 が違う刺激対を被験者に呈示し、吸音面配置の 主効果を調べた。

それぞれ、順序効果を考慮し、刺激の順序を 逆にした刺激対についても評価した。刺激対の 数は実験1が72対、実験2が48対である。実験1、実験2とも受音点ごとに実験を行い、受音点における全刺激対を混ぜてランダムに呈示した。実験と実験の間には十分な休憩をとった。

5.1.1 使用音源

各条件の6方向インパルス応答に、ショパン 作曲「幻想即興曲」の無響室録音冒頭13秒間を たたみ込んだものを刺激とした。

5.1.2 被験者

20才代の学生11名である。

5.1.3 評価方法

被験者は各刺激対に対して、前の刺激に対す る後の刺激の各評価項目を7段階で判断し、回 答用紙に記入した。Table.4に5つの評価項目を 示す。ここにある、みかけの音源の幅(ASW)と 音に包まれた感じ(LEV)は空間印象と呼ばれ、コ ンサートホールの音場を評価する重要な属性の 一つである。

Table. 4 評価項目

非常に	かなり	少し	同じ	少し	かなり	非常に
音が大きい			音の大きさ			音が小さい
響きが長い			響きの長さ			響きが短い
はっきりした			音の明瞭性		は	っきりしない
みかけの音	源の幅が大	きい みかけ	▶の音源の幅	(ASW) み	かけの音源の	つ幅が小さい
音に包まれ	た感じがある) 音に	包まれた感じ	(LEV)	音に包まれた	と感じがない

5.2 各条件が音場に及ぼす影響 乱反射率による影響

Fig. 5 に吸音面配置ごとの残響減衰曲線を示 す。乱反射率が高いほど減衰が少なくなってい る。sc20 の条件は初期の減衰が他の条件と異な る傾向となっている。吸音面配置が fl_ceil の条 件は、乱反射率による影響が大きい。

吸音面配置による影響

Fig. 6 に乱反射率条件ごとの残響減衰曲線を 示す。uni は fl_rear より減衰が少ない。fl_ceil は 乱反射率 40%以下では最も減衰が少ないが、 60%で uni とほぼ同じになり、80%では uni と fl ceil の間になる。

5.3 聴感評価実験の結果

実験1は乱反射率の主効果、実験2は吸音面 配置の主効果について、乱反射率条件ごとに、 各評価項目での吸音面配置の主効果、主効果の 個人差、組み合わせ効果、平均の順序効果、順 序効果の個人差を要因として分散分析(有意水 準5%)を行った。Table.5に各条件間の実測の 物理指標の変化量と聴感印象評価の結果を示す。 物理指標の変化量が弁別閾以上、または聴感印 象に有意差がある場合を不等号で示し、そうで ない場合を等号で示している。A/Bにおいて、A がBより大きければ「>」、BがAより大きけれ ば「<」、そうでなければ「=」で示している。 物理指標の不等号の右の数字は、変化量が弁別 閾の何倍以上になっているかを示す。数字が無 いものは1倍である。

聴感印象評価について、uniの条件では有意差が出た項目が少なく、fl_ceilの条件では多くの 項目で有意差がある。明瞭性に関しては、あま り有意差が出なかった。

5.4 物理指標と聴感印象評価の対応関係

再現音場の各条件間での物理指標の変化量と、 一対比較による各条件間の聴感印象評価の対応 について検討する。Gは受音点の応答を自由音 場の音源から10m点で測定した応答で基準化し たものである。LF、LGは次の式により算出する。 ISOの規定に従い、LFは125Hz帯域から1kHz 帯域の算術平均値、LGは125Hz帯域から1kHz 帯域の算術平均値を用い、それ以外の指 標は500Hzと1kHz帯域の算術平均値を用いる。 LFの弁別閾は0.05、LGは1dBである。

$$LF = \frac{\int_{5}^{80\,\mathrm{ms}} p_{\mathrm{L}}^{2}(t)dt}{\int_{0}^{80\,\mathrm{ms}} p^{2}(t)dt} \quad LG = 10\log_{10}\left\{\frac{\int_{80\,\mathrm{ms}}^{\infty} p_{\mathrm{L}}^{2}(t)dt}{\int_{0}^{\infty} p_{10\,\mathrm{m}}^{2}(t)dt}\right\} [\mathrm{dB}]$$

p(t):受音点における無指向性インパルス応答 p_{10m}(t):自由空間において音源より10mの距離 で測定した応答

p_L(t): ゼロ感度方向を音源方向に向けた双指向

性マイクロホンで測定した応答

Table.5において、物理指標と聴感評価が対応 している場合は薄い色の網掛、逆の対応をして いるものは濃い色の網掛、どちらでもないもの は網かけ無しで示している。

音響特性とまったく逆の聴感評価になった条件間は少ないが、必ずしも物理指標と対応する 聴感評価にはなっておらず、物理指標と聴感印 象評価が一致する割合は、40%から70%である。 物理指標の変化量が弁別閾を大きく超えても、 聴感印象評価では有意差がない場合も多い。 Table.5 条件間の物理指標(実測)の変化量と

able.5 条件间の物理指標(美側)の変化量と 聴感印象評価の対応関係

幾何音響シミュレーションに基づく6チャン ネル音場再現システムを構築し、物理的、聴感 的に再現性を検証した。スピーカーの変更、実 音場で測定したインパルス応答による音場再現、 波動解析の可聴化等によりシステムを検証して いく必要がある。

参考文献

[1] 横山栄, 東京大学博士論文, 2003