壁面の拡散性を考慮した幾何音響シミュレーション

ー乱反射率の入射角依存性の反映ー

Geometrical acoustic analysis taking into account incident angle dependence of scattering coefficient

学籍番号	096754
氏 名	杉原 慎一朗(Sugihara, Shinichiro)
指導教員	佐久間 哲哉 准教授

1. はじめに

音場の解析手法には波動方程式を数値的 に解く波動数値解析と音線追跡により、幾 何的に解く幾何音響解析がある。幾何音響 解析は波動数値解析に比べ厳密性に欠ける が、計算資源、計算時間の観点から大規模 空間を扱う際の現実的手法である。この手 法を用いた従来の幾何音響シミュレーショ ンでは、壁面の音響特性として吸音率のみ を扱っていたが、近年では、鏡面反射と乱 反射を区別して後者のエネルギの割合を乱 反射率と定義し、その数値を反映させ、壁 面の拡散性の影響を検討可能になっている。 市販の幾何音響シミュレーションで導入が 進む壁面の乱反射率は、吸音率と同様、測 定法も整備されたランダム入射時の値が用 いられる。しかし、一般的な拡散体である リブ構造などの乱反射率は入射角依存性が 強く、室内音響特性への影響も大きいこと から、その入射角依存性を反映した幾何音 響シミュレーションが望まれる。一方、斜 入射乱反射率は実測が困難であるのに対し、 波動数値解析により比較的容易に求められ る^[1]。本研究では、斜入射乱反射率を導入 した幾何音響シミュレーションを試み、室 内音響指標に及ぼす影響を考察する。まず、 導入精度として、斜入射乱反射率の方向平

均化による室内音響指標の計算誤差を検討 する。次に、斜入射乱反射率の反映結果と して、リブ設置方向による室内音響指標の 計算値の差異を検討する。最後に、実測値 との比較を通して手法の妥当性を検証する。

2. 数值解析手法

斜入射乱反射率は BEM により算出され るデータを用いた (Fig. 1)。幾何音響シミュ レーション手法は音線法を用いた。音線法 への乱反射率の導入は、各音線の壁面反射 時に入射角に応じて確率的に鏡面反射か乱 反射を与え、一度乱反射した音線は以降乱 反射を続けるものとした。乱反射はランベ ルトの余弦法則に従うものとした。

3. 斜入射乱反射率のブロック平均

検討方法 既報^[2]で算出されている矩形 波・正弦波断面の一次元周期構造壁面 (Fig. 2)の斜入射乱反射率データ (2,344 方向、 1,2,4 kHz)を元に、入射方向によるブロッ ク平均を施し、幾何音響シミュレーション への導入を試みる。ブロック平均は、天頂 角 *θ*、方位角 *φ* を各々 *N_θ*, *N_φ*分割し、ブ ロック内の平均値を算出した (Fig. 3)。この ブロック平均による入射角依存性の分布劣 化を定量化するため、元データに対するブ ロック平均値の統計入射平均二乗誤差を算 出する。なお、誤差はブロックメッシュの 方位にも依存するため、メッシュを回転し て方位角度毎に算出した。

結果と考察 Fig. 4 にメッシュ方位を変え た場合の最大・最小・平均誤差を示す (灰 色線はランダム入射値の誤差)。全体として、 天頂角分割数 (N_{θ}) より方位角分割数 (N_{φ}) の方が誤差への影響が大きく、ランダム入 射値の誤差が大きい (入射角依存性が強い) 場合にその傾向が顕著である。全ケースで、 メッシュ方位の影響は (N_{θ}, N_{φ}) = (4, 16) 程 度で微小となり、誤差は 0.15 以下に収束 している。従って、以降の幾何音響シミュ レーションによる検討では、粗いブロック として (N_{θ}, N_{φ}) = (2, 4)、細かなブロックと して (N_{θ}, N_{φ}) = (4, 16) を用いることとする。 4. 幾何音響シミュレーションへの乱反射

率入射角依存性の反映

4.1 ブロック平均による室内音響指標の計算誤差

検討方法 解析モデルは 20 m×40 m×20 m(h)の直方体室、天井・床のみ吸音性、周 壁は反射性とし、前節の周期構造壁をリブ が水平となる向きで想定した (Fig. 5)。乱反 射率は元データ、ブロック平均値、ランダ ム入射値の各々を用い、受音点 6 点のイン パルス応答から室内音響指標を算出した。 結果と考察 各指標について、乱反射率の 元データを用いた計算結果に対するブロッ ク平均値、ランダム入射値を用いた場合の 絶対誤差 (受音点平均) を Table. 1 に示す。 表中、灰色は弁別閾以上の誤差を表し、G, C₈₀, LF では概ね弁別閾以下であるのに対 し、T₂₀, EDT では弁別閾を上回るケースが 多い。特に、ランダム入射値、粗いブロッ ク平均値を用いた場合、T20の誤差が著しく 大きくなるケースもみられる。Fig.6 に誤

Fig. 1 Examples of directional scattering coefficients.

Fig. 2 Two types of samples with periodical surfaces.

Fig. 3 Examples of directional blocks for averaging scattering coefficients.

Fig. 4 Average errors of block average scattering coefficients to original directional values. Gray lines represent errors of random-incidence values.

差が顕著となった 1 kHz の T₂₀, EDT を 示す。元データの場合に対してランダム入 射値の場合に T₂₀ は大幅に減少すること から、乱反射率の入射角依存性を無視する ことで、音場の拡散性が過大に高められた ものと推察される。ブロック平均値の場合 でも同様に T₂₀, EDT は過小評価の傾向に あり、拡散性の低い室内音場では、より詳 細なブロック平均値または元データの適用 が必要と考えられる。

4.2 リブ設置方向による室内音響指標の計算値の差異

検討方法前節と同様の解析モデルで、前 節の矩形波断面の周期構造壁をリブが床面 に対し水平 (以下、リブ水平)となる向きとと 床面に対し垂直 (以下、リブ垂直)となる向きと きに想定した (Fig. 5)。乱反射率は前節と同 様とし、受音点 6 点のインパルス応答を求 め、室内音響指標を算出した。 **結果と考察** Fig. 7 に差が顕著となった 1 kHz の Tay FDT を示す Tay FDT とも

結果と考察 Fig. 7 に差が顕著となった 1 kHz の T₂₀, EDT を示す。T₂₀, EDT とも、 元データと細かなブロック平均値の場合に リブ水平がリブ垂直より長い。斜入射乱反 射率の入射角依存性からリブ水平では、リ ブ垂直より床面に対し水平な方向の音線 が残り、反射性の側壁間、前壁と後壁間で 往復反射を繰り返し、エネルギ減衰が遅い ことが原因と考えられる。

Fig. 6 Reverberation time and EDT at 1kHz calculated with different scattering coefficients (original directional, block averaging and random-incidence values).

Table. 1 Average differences of room acoustic indices calculated with block averaging and random-incidence
scattering coefficients against with original directional values.

acoustic	parameters	1kHz		2kHz		4kHz		. 1
indices	of averaging	sinusoid	rectangles	sinusoid	rectangles	sinusoid	rectangles	jnd
T ₂₀	random	56.8 %	45.5 %	2.5 %	5.6 %	7.6 %	9.7 %	
	$(N_\theta,N_\varphi)=(2,4)$	48.4 %	42.2 %	2.6 %	6.6 %	5.0 %	9.4 %	5%
	$(N_\theta, N_\varphi) = (4, 16)$	8.4 %	19.5 %	3.8 %	6.8 %	5.4 %	10.8%	
EDT	random	27.0%	16.5%	5.5%	5.8%	3.8%	3.7%	
	$(N_\theta, N_\varphi) = (2, 4)$	26.9%	15.0%	7.3%	4.1%	2.8%	5.7%	5%
	$(N_{\theta}, N_{\varphi}) = (4, 16)$	10.6%	5.5 %	4.9%	5.0%	3.2%	4.2%	
G	random	0.8 dB	0.7 dB	0.6 dB	0.5dB	0.2dB	0.4dB	
	$(N_\theta, N_\varphi) = (2, 4)$	0.6 dB	0.6 dB	0.5 dB	0.5dB	0.1 dB	0.4dB	1 dB
	$(N_\theta,N_\varphi)=(4,16)$	0.1 dB	0.2 dB	0.3 dB	0.2dB	0.2dB	0.4dB	
C ₈₀	random	1.2 dB	0.8 dB	0.4 dB	0.3dB	0.5dB	0.3dB	
	$(N_\theta, N_\varphi) = (2, 4)$	0.7 dB	0.6 dB	0.6 dB	0.3dB	0.4dB	0.3dB	1 dB
	$(N_\theta, N_\varphi) = (4, 16)$	0.5dB	0.5dB	0.4dB	0.2dB	0.5dB	0.4dB	
LF	random	0.023	0.021	0.041	0.037	0.037	0.061	
	$(N_\theta, N_\varphi) = (2, 4)$	0.019	0.028	0.034	0.037	0.034	0.051	0.05
	$(N_{\theta}, N_{\varphi}) = (4, 16)$	0.007	0.015	0.024	0.019	0.033	0.049	

 4.3 実測値との比較による手法の妥当性の 検証

検討方法 既報^[3]による実測値と比較する ため、解析モデルは 6 m×4.8 m×3.6 m (h) の直方体室、天井のみ吸音性、周壁・床は 反射性とし、側壁 2 面に矩形波断面の一次 元周期構造壁 (Fig. 8) をリブ垂直、リブ水 平の向きで想定した (Fig. 9)。乱反射率は前 節と同様とし、受音点 9 点のインパルス応 答を求め、室内音響指標を算出した。

結果と考察 1 kHz, 2 kHz の T_{20} を Fig. 10 に示す。1 kHz のリブ水平の場合、実測 値と対応するが、その他のケースでは、元 データ、ブロック平均値を用いた場合に実 測値より T_{20} を過小評価する傾向にある。 計算値は Eyring の残響式の結果に近づく ことから、実測値より拡散性を過大評価す る傾向にある。反射波の指向特性にランベ ルトの余弦法則を用いるため、現実の反射 波の挙動と異なることが原因と考えられる。

5. まとめ

拡散性の低い直方体室で斜入射乱反射率 を導入した幾何音響シミュレーションを試 み、室内音響指標に及ぼす影響を検討した。

calculated with different directions of a diffuser.

乱反射率の入射角依存性を考慮することで 残響時間・初期減衰時間は大きく変化し、 斜入射乱反射率の導入には詳細な方向別 データが必要であることが例示された。T20 は実測値と対応せず、反射波の指向特性を 考慮した解析が望ましいと考えられる。

参考文献

[1]Kosaka *et al.*, Acoust. Sci. Tech. 26, 136-144, 2005.

[2]佐久間他, 建音研資, AA2005-39.

[3]土屋他, 音講論(春), 2009. sr = 0.25, 0.37 (1 kHz) (2 kHz)

